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Abstract 18 

NASA’s Soil Moisture Active Passive (SMAP) mission provides global surface soil moisture 19 

retrievals with a revisit time of 2-3 days and a latency of 24 hours.  Here, to enhance the utility of 20 

the SMAP data, we present an approach for improving real-time soil moisture estimates 21 

(“nowcasts”) and for forecasting soil moisture several days into the future.  The approach, which 22 

involves using an estimate of loss processes (evaporation and drainage) and precipitation to 23 

evolve the most recent SMAP retrieval forward in time, is evaluated against subsequent SMAP 24 

retrievals themselves.  The nowcast accuracy over the continental United States (CONUS) is 25 

shown to be markedly higher than that achieved with the simple yet common persistence 26 

approach.  The accuracy of soil moisture forecasts, which rely on precipitation forecasts rather 27 

than on precipitation measurements, is reduced relative to nowcast accuracy but is still 28 

significantly higher than that obtained through persistence. 29 

 30 

 31 

  32 
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1. Introduction 33 

The SMAP (Soil Moisture Active Passive, Entekhabi et al. 2010) mission provides estimates, 34 

across the globe, of moisture in the top several centimeters of soil at a spatial resolution of about 35 

40 km and with a revisit time of 3 days or less.  To promote the use of the data in the community, 36 

the data are produced with a mean latency of 24 hours, close to real time for many applications.  37 

We posit, as motivation for the present paper, that some users of these data may find utility in 38 

products of even lower latency (soil moisture “nowcasts”, i.e., with a latency of 0 hours) as well 39 

as in soil moisture forecasts, out several days.  Such information could benefit, for example, 40 

those who use soil moisture to evaluate current and near-future ground trafficability or the 41 

potential for certain hazards such as flash floods and landslides. 42 

The objective of this paper is to describe an approach for deriving improved real-time and 43 

forecasted surface soil moisture estimates from the SMAP data.  Given a soil moisture retrieval, 44 

WN, on Day N, our approach considers the forward evolution of soil moisture from this value 45 

using precipitation estimates (either measured or forecasted) in combination with a loss function, 46 

the latter being derived from a history of SMAP retrievals and precipitation observations.  The 47 

resulting real-time and forecasted soil moisture estimates are thus data-driven (independent of 48 

land model formulation) and are statistically consistent with the original retrieval product, 49 

greatly facilitating their use in applications that already utilize near-real time SMAP data, at least 50 

in areas with adequate precipitation data.  (The approach will not provide reliable soil moisture 51 

estimates where precipitation is poorly measured.) 52 



4 

 

The datasets used here and the estimation approach are described in section 2.  The accuracy of 53 

the estimates so produced is illustrated in section 3 through quantitative comparisons with 54 

subsequent SMAP retrievals.  For context, this accuracy is compared to that obtained with an 55 

approach already applied, knowingly or not, by many data users:  assuming simple persistence, 56 

i.e., assuming that the best estimate of the current soil moisture state is the most recently 57 

measured value for that state, even if that measurement is a day to several days old. 58 

 59 

2. Data and Approach 60 

 61 

a. Datasets Used 62 

We use SMAP Version 3 Level 2 soil moisture retrievals (O’Neill et al. 2016; Jackson et al. 63 

2016), which are based on L-band radiometer measurements.  These data represent volumetric 64 

soil moisture in roughly the top 5 cm of soil and are provided on a 36 km equal-area Earth-fixed 65 

grid (Brodzik et al. 2012).  As in Koster et al. (2016), we ignore the retrieval flag associated with 66 

“recommended quality” to allow greater spatial and temporal coverage. 67 

The precipitation data used to derive the soil moisture loss functions are from the Climate 68 

Prediction Center Unified Gauge-Based Analysis of Global Daily Precipitation (CPCU; 69 
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ftp://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_GLB/).  As in Koster et al. (2016), 70 

this 0.5°× 0.5° dataset was converted to the SMAP grid using a conservative regridding (areal 71 

weighting) approach.  In CONUS, a precipitation amount listed for a given day corresponds to 72 

water falling over the 24 hours up to 12Z on that day; 12Z corresponds to 6AM in the middle of 73 

the country, the approximate local solar time of the SMAP retrievals. 74 

The 2016 precipitation forecasts (also regridded to the SMAP grid) are from the Goddard Earth 75 

Observing System, Version 5.13.1 (GEOS-5) model 76 

(https://gmao.gsfc.nasa.gov/GMAO_products).  For each day considered in the evaluation phase 77 

of the study (May-September of 2016; see below), precipitation forecasts from GEOS-5 are 78 

available for the following 5 days beginning at 12Z. 79 

 80 

b. Estimation Approach 81 

In the following, we assume that a SMAP soil moisture retrieval (in volumetric units, m3/m3) for 82 

Day N, WN, is available on Day N+1 (given the 24-hour latency) and that we require estimates of 83 

WN+1 through WN+5.  (For example, if the current day is N+1, we require a “nowcast” of soil 84 

moisture on that day as well as soil moisture forecasts for the next four days based on the 85 

previous day’s measurement WN.)  Our approach involves updating W through those five days 86 

by integrating equations that address how soil moisture increases with precipitation and 87 
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decreases with evapotranspiration and drainage.  Given a SMAP retrieval on Day N, we update 88 

soil moisture over the next five days (hour by hour) with: 89 

W(t+∆t)  =  W(t)  – L(W(t))·∆t +  Wadd ,      (1) 90 

where t is the hour of integration, the time step ∆t is set to 3600 s, and L(W(t)) is the assumed 91 

rate of soil moisture loss via evapotranspiration and drainage (volumetric units per second).  The 92 

term Wadd is the soil moisture increase associated with I (mm/s), the assigned infiltration rate: 93 

 Wadd = I ∆t / D,         (2) 94 

where the depth D is set to 50 mm and Wadd is thus in volumetric units.  The infiltration rate I is 95 

in turn set equal to the measured or forecasted precipitation rate P (mm/s) unless that rate, if it 96 

were to be applied over a full day, would exceed the current soil water deficit: 97 

I = min { P ,  D(Wmax – W(t)) / nd },       (3) 98 

where nd is the number of seconds in a day and Wmax is the assumed maximum allowable value 99 

for W.  If I is set to the second term (associated with the soil water deficit) in (3), the excess 100 

precipitation water is assumed to run off the surface.  The somewhat arbitrary use of a daily total 101 

to determine the excess reflects in part our lack of knowledge of the sub-diurnal character of the 102 

daily precipitation. 103 
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The precipitation rate P is taken from observations (to the extent possible, up to the present time) 104 

or from a weather forecast model.  Test runs were performed to verify that an hourly time step 105 

for the integration of the equations is indeed adequate; the results presented in section 3 below 106 

are essentially reproduced when the time step is decreased, for example, to 6 minutes. 107 

 108 

c. Loss Function Estimation 109 

Using (1)-(3) to update soil moisture requires a description of the loss function L and an estimate 110 

for Wmax.  For this we jointly analyze SMAP soil moisture retrievals and CPCU precipitation 111 

measurements during May-September 2015.  At each grid cell, we determine the lowest and 112 

highest soil moisture retrieval values, Wlow and Whigh, attained at that cell during that period.  113 

The low end of the assumed soil moisture range, Wmin, is set to Wlow, and the high end of the 114 

range, Wmax, is arbitrarily set to Whigh + 0.1*(Whigh-Wmin).  We set the value of the loss function 115 

at the low end, L(Wmin), to 0.  At Wmax, we set it to an arbitrarily high value: L(Wmax)=Wmax 116 

volumetric units per day.  Note that such a high loss rate cannot be maintained for long – in our 117 

simulations with L, unrealistic soil moistures at the high end quickly adjust themselves to 118 

produce loss rates of reasonable magnitude.  We tested different high values for L(Wmax) and 119 

different definitions for Wmax, with little impact on our results. 120 

We next identify the three intermediate soil moisture values (WA, WB, and WC) that divide the 121 

range between Wmin and Wmax into four equal segments.  Estimating the loss function amounts to 122 
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determining L at these intermediate moistures; once these values are determined, the value of L 123 

at any other soil moisture can be estimated through linear interpolation.  We establish the optimal 124 

values of L(WA), L(WB), and L(WC) through brute force.  To test a set of L values at a given grid 125 

cell, we initialize an integration with the first SMAP retrieval at the cell in May 2015 and use 126 

(1)-(3) along with the 2015 gauge-based precipitation data to produce a time series of soil 127 

moisture spanning May-September of that year, and we then compute the root mean square error 128 

(RMSE) between the simulated soil moistures and the SMAP retrievals in the cell as they occur.  129 

(Note that we could have chosen in these integrations to reset W(t) to the SMAP retrieval values 130 

as they occurred, after noting the error; tests indicate, however, that this modification has very 131 

little impact on our results.)  We test a comprehensive suite of L(WA), L(WB), and L(WC) values 132 

in this way, limiting the search space by assuming that L never decreases with increasing soil 133 

moisture, and find the one set that best reproduces the SMAP retrieval time series.   134 

Figure 1 displays the loss functions derived at three representative interior sites.  For each site, 135 

the leftmost panel shows the optimized loss function itself, and the top right panel shows the 136 

time series (covering May-September 2015) of the SMAP Level 2 retrievals there (as red dots) as 137 

well as the soil moisture estimates (blue dots) derived with (1)-(3) using the loss function in 138 

conjunction with CPCU rainfall data.  For reference, the rainfall data are shown in the bottom 139 

right panel. 140 

Although they have the same basic form, the loss functions at the three sites differ, with larger 141 

soil moisture losses occurring, for example, at low soil moistures for the New Mexico site 142 

relative to the Arkansas site.  The comparisons of the retrievals with the estimated soil moistures 143 
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generally show strong agreement in terms of RMSE and the square of the correlation coefficient 144 

(r2), indicating that the loss functions do indeed capture the hydrological behavior of the near-145 

surface soil.  Again, these are representative results for the interior of CONUS; as shown in 146 

Figure 2, however, the r2 values are a bit lower, and thus the optimization of L is more 147 

questionable, in the wet and highly vegetated areas of the East (perhaps due to the quality of the 148 

SMAP retrievals under thick vegetation) and in the very dry areas of the Southwest (perhaps due 149 

to irrigation impacts or to the low variability of soil moisture there during summer). 150 

The concept of loss functions has an extensive history (e.g., Manabe, 1969).  Direct estimates of 151 

loss functions from observations are rare, but where they exist, it is encouraging to note that they 152 

have the same basic form as those shown in Figure 1, with an increase in L with soil moisture at 153 

the very dry end, a plateauing out of the relationship in the midrange (as in Figure 1b and 1c), 154 

and a high sensitivity of L to soil moisture at the wet end (see, e.g., Salvucci et al. 2001, their 155 

Figure 3; Sun et al. 2011, their Figure 2).  Such functions in the literature are sometimes 156 

normalized by net radiation or potential evaporation to account for seasonal variations in the 157 

drivers of surface evaporation; we reduce the need for this here (and also mitigate snow cover 158 

issues) by focusing on the May-September period over CONUS. 159 

 160 

d. Simulations Performed and Accuracy Metric  161 
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We evaluate soil moisture nowcast and forecast skill obtained with our approach during May-162 

September of 2016, a period independent of that used (May-September of 2015) to estimate the 163 

loss function L at each site.  For each SMAP retrieval at each location, we integrate (1)-(3) 164 

forward in time 5 days (starting with the retrieval value) using two sets of precipitation 165 

estimates: (i) precipitation forecasts from the GEOS-5 modeling system, and (ii) CPCU rainfall 166 

measurements, the type of data that might be available for producing soil moisture nowcasts.  167 

We then compare the resulting soil moisture updates to any later SMAP retrievals appearing 168 

during the 5-day window.  For example, a grid cell with a SMAP retrieval on both Day N and 169 

Day N+3 effectively produces a data pair ([Westimated(N+3), Wretrieved(N+3)]) that can be included 170 

in a 3-day-lead RMSE calculation.  We compute the RMSE over all such 3-day-lead data pairs 171 

during May-September of 2016.  We similarly compute the RMSE for the other leads; at a given 172 

grid cell, each RMSE will be based on a unique collection of dates.  Naturally, our interpretation 173 

of accuracy here is tempered by the knowledge that SMAP soil moisture retrievals have their 174 

own errors; we are, in effect, quantifying the skill in predicting a SMAP retrieval before it is 175 

available. 176 

Our analyses focus on CONUS (including neighboring parts of Canada and Mexico), a large-177 

scale area with two important features: (i) precipitation measurements of suitable spatial and 178 

temporal coverage, and (ii) climatic regimes that range from very dry (in the west) to wet and 179 

humid (in the east). 180 

 181 
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3. Results 182 

For a lead of one day, the leftmost and middle panels of Figure 3a show the accuracy of near-183 

surface soil moisture estimates produced with (1)-(3) using, for P, gauge-based rainfall data and 184 

precipitation forecasts, respectively.  For context, the rightmost panel shows the results obtained 185 

by assuming soil moisture persistence, i.e., by assigning the value of the soil moisture retrieval 186 

on day N to each of the subsequent five days.  The next three rows show the corresponding 187 

results for leads of 2, 3, and 5 days.  Results for a 4-day lead are not shown; the number of 188 

retrievals separated by exactly 4 days is severely limited over the US due to the orbital 189 

characteristics of the SMAP observatory. 190 

As expected, soil moisture estimates are more accurate when CPCU data rather than precipitation 191 

forecasts are used in (1)-(3).  Of course, the accuracy levels in the first column are only relevant 192 

to nowcasts, and only in areas where real-time rainfall measurements are in fact available.  193 

CPCU data are generally available to users with a latency of 1-2 days, which is relatively high.  194 

We expect, however, that users in many areas will have more immediate access to local rainfall 195 

measurements for local nowcast calculations, and some satellite-based precipitation datasets 196 

have low latencies and may prove useful for the nowcasts – some components of the IMERG 197 

product (Huffman et al., 2014), for example, feature a latency of several hours.  If precipitation 198 

measurements of any kind are not available, soil moisture nowcasts will need to rely on 199 

precipitation forecasts (or analyzed precipitation products), and all soil moisture forecasts must 200 

rely on precipitation forecasts; for these, the second column in Figure 3 is more relevant.  Note 201 

that for some estimations, measured precipitation may be available during the first part of the 202 
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simulation, in which case the relevant accuracies would lie in between the first and second 203 

columns. 204 

At all leads, RMSE values obtained with the loss function approach tend to lie below 0.04 m3/m3 205 

in the western part of the continent and in areas along the eastern coast, using either rainfall 206 

dataset.  The higher RMSEs obtained with the loss function approach when using forecasted 207 

rainfall still lie below 0.06 m3/m3 over most of the continent, particularly for leads of 3 days or 208 

less.  To provide some perspective, the SMAP mission imposes an accuracy requirement of 0.04 209 

m3/m3, though this is for evaluations against in situ data, something not attempted here. 210 

Using either rainfall dataset, the RMSE values of our soil moisture estimates are lower almost 211 

everywhere, for all leads, than those obtained with the persistence approach.  Again, the 212 

persistence approach is effectively employed by anyone who uses the most recent SMAP 213 

retrieval in their particular application.  Figure 3 suggests that using the loss function approach 214 

instead for the application could prove beneficial.   215 

The results are summarized in Figure 4, which shows the average RMSE computed across the 216 

area at each lead for the different approaches.  Again, using gauge-based precipitation in (1)-(3) 217 

produces more accurate estimates than using precipitation forecasts, and both sets of estimates 218 

outperform persistence.  While persistence performs about as well as the loss function approach 219 

with forecasted precipitation at a lead of one day (soil moistures do take some time to diverge 220 

from initial values), the accuracy decreases relatively quickly with lead. 221 
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 222 

4. Summary and Discussion 223 

The nowcasts and forecasts described in section 3 are fair, not being based on information from 224 

the period following the retrieval.  As seen in Figures 3 and 4, integrating (1)-(3) forward in time 225 

produces nowcasts or forecasts that are more accurate – at least in terms of being able to predict 226 

the next SMAP retrieval – than those obtained by assuming persistence. 227 

Damped persistence, in which a soil moisture anomaly evolves with an assigned time scale 228 

toward a climatological value during the forecast period, is another estimation approach, one that 229 

can be tested once the SMAP data record is large enough to provide a reliable climatology.  230 

Alternatively, real-time or forecasted soil moistures could be extracted directly from weather 231 

forecast products.  The approach described here, however, has some notable advantages.  Unlike 232 

damped persistence, the loss function approach, which implicitly uses locally-optimized damping 233 

time scales, also makes use of measured or forecasted precipitation information.  Unlike weather 234 

forecast model soil moisture products, which are subject to inaccuracies in model formulation 235 

and are characterized, in any case, by model-dependent statistical moments (Koster et al. 2009), 236 

our approach makes direct use of the most recent SMAP retrieval and produces data that are, by 237 

construction, statistically consistent with SMAP retrievals and are thus immediately relevant to 238 

applications already using SMAP data.  Note, however, that raw precipitation forecasts generated 239 

with numerical weather prediction models can have statistics in conflict with those of the true 240 

precipitation at a site (e.g., due to differences in spatial scale), and such deficiencies could affect 241 
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the statistics of the loss function-based soil moisture forecasts discussed herein.  As a remedy, 242 

the forecast precipitation rates could be suitably adjusted with established procedures (e.g., Clark 243 

et al. 2004, Charba and Samplatsky 2011).   244 

Another important caveat is the fact that the soil moisture estimation approach described herein 245 

is limited to regions with adequate precipitation estimates, necessary for the construction of 246 

accurate loss functions.  Note that as the size of the SMAP data record increases, the accuracy of 247 

the derived loss functions in these regions should increase.  Also worth noting is that the 248 

precipitation forecasts used herein were produced by GEOS-5, an experimental forecast system; 249 

soil moisture forecasts might improve if bias-corrected precipitation forecasts from an 250 

operational weather center were used instead. 251 

We fully expect that many applications would benefit from more up-to-date (and forecasted) soil 252 

moisture information than allowed by operational SMAP product latency.  Not discussed here, 253 

but also relevant, is the potential for using the approach to back-fill temporal gaps in the SMAP 254 

data record – gaps caused by the unavoidable 2-3 day return time of the SMAP sensor and 255 

potentially exacerbated by, for example, intermittent radio frequency interference or by active 256 

rainfall during the time of overpass.  Given adequate precipitation data and a suitable time period 257 

over which to fit the functions, the data-driven loss function approach indeed has the potential to 258 

transform the SMAP data record into a daily record of soil moisture with no missing data, all the 259 

way up to real time or even a few days into the future. 260 

 261 
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Figure Captions 303 

 304 

Figure 1.  Representative results from loss function estimation.  a. Left panel: derived 305 

(optimized) loss function for a grid cell in southwestern New Mexico, showing, as a function of 306 

volumetric soil moisture, how much of that soil moisture (shown here in m3 m-3 day-1) is 307 

expected to be removed from the near surface through evaporation and drainage.  Top right 308 

panel: SMAP Level 2 soil moisture retrievals (m3 m-3) at the grid cell (red dots) and 309 

corresponding simulated values obtained using the loss function in conjunction with the observed 310 

CPCU precipitation data over the time period (blue dots; see text).  Bottom right panel: CPCU 311 

precipitation (mm day-1).  The x-axis on the rightmost plots begins on May 1, 2015.  b. Same, but 312 

for a grid cell in southwestern Kansas.  c. Same, but for a grid cell in central Indiana. 313 

 314 

Figure 2.  Spatial distribution of the square of the correlation coefficient between the 2015 315 

SMAP Level 2 soil moisture retrievals and the soil moisture estimates produced using the loss 316 

functions fitted to that year’s data.  To generate the estimates, soil moisture at each grid cell was 317 

initialized on 1 May 2015 and then updated through September using the locally optimized loss 318 

function and the time series of local precipitation. 319 

 320 

Figure 3.  (a) Skill of 1-day lead soil moisture estimates (computed as the RMSE of estimated 321 

soil moisture versus SMAP retrieval value, if it exists, one day after a given retrieval) for the loss 322 
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function approach using gauge-measured precipitation (left panel, relevant to soil moisture 323 

nowcasts), the loss function approach using forecasted precipitation (middle panel, relevant to 324 

soil moisture nowcasts and forecasts), and the persistence approach (right panel).  Results are 325 

shown for 2016, a period independent of that used to optimize the loss functions.  (b) Same, but 326 

for 2-day lead estimates.  (c) Same, but for 3-day lead estimates.  (d) Same, but for 5-day lead 327 

estimates. 328 

 329 

Figure 4.  Areal averages of the RMSE values in Figure 3 as a function of lead for the 330 

persistence approach (blue), the loss function approach using forecasted precipitation (yellow), 331 

and the loss function approach using gauge-measured precipitation (red), of relevance to 332 

potential nowcast calculations.   333 

 334 

  335 
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